

Table	of	Contents
Preface

ES2015

let	and	const

Arrow	Functions

Classes

Default	parameters

Template	Literals

Destructuring	assignments

Enhanced	Object	Literals

For-of	loop

Promises

Modules

New	String	methods

New	Object	methods

The	spread	operator

Set

Map

Generators

ES2016

Array.prototype.includes()

Exponentiation	Operator

ES2017

String	padding

Object.values()

Object.entries()

Object.getOwnPropertyDescriptors()

Trailing	commas

Async	functions

Shared	Memory	and	Atomics

ES2018

2

Rest/Spread	Properties

Asynchronous	iteration

Promise.prototype.finally()

Regular	Expression	improvements

ESNext

Array.prototype.{flat,flatMap}

Optional	catch	binding

Object.fromEntries()

String.prototype.{trimStart,trimEnd}

Symbol.prototype.description

JSON	improvements

Well-formed	JSON.stringify()

Function.prototype.toString()

3

Preface

Welcome!
I	wrote	this	book	to	help	you	move	from	pre-ES6	knowledge	of	JavaScript	and	get	you	quickly
up	to	speed	with	the	most	recent	advancements	of	the	language.

JavaScript	today	is	in	the	privileged	position	to	be	the	only	language	that	can	run	natively	in
the	browser,	and	is	highly	integrated	and	optimized	for	that.

The	future	of	JavaScript	is	going	to	be	brilliant.	Keeping	up	with	the	changes	shouldn't	be
harder	than	it	already	is,	and	my	goal	here	is	to	give	you	a	quick	yet	comprehensive	overview
of	the	new	stuff	available	to	us.

Thank	you	for	getting	this	ebook.	I	hope	its	content	will	help	you	achieve	what	you	want.

Flavio

You	can	reach	me	via	email	at	flavio@flaviocopes.com,	on	Twitter	@flaviocopes.

My	website	is	flaviocopes.com.

Introduction	to	ECMAScript
Whenever	you	read	about	JavaScript	you'll	inevitably	see	one	of	these	terms:

ES3
ES5
ES6
ES7
ES8
ES2015
ES2016
ES2017
ECMAScript	2017
ECMAScript	2016
ECMAScript	2015

What	do	they	mean?

They	are	all	referring	to	a	standard,	called	ECMAScript.

Preface

4

mailto:flavio@flaviocopes.com
https://twitter.com/flaviocopes
https://flaviocopes.com

ECMAScript	is	the	standard	upon	which	JavaScript	is	based,	and	it's	often	abbreviated	to
ES.

Beside	JavaScript,	other	languages	implement(ed)	ECMAScript,	including:

ActionScript	(the	Flash	scripting	language),	which	is	losing	popularity	since	Flash	will	be
officially	discontinued	in	2020
JScript	(the	Microsoft	scripting	dialect),	since	at	the	time	JavaScript	was	supported	only
by	Netscape	and	the	browser	wars	were	at	their	peak,	Microsoft	had	to	build	its	own
version	for	Internet	Explorer

but	of	course	JavaScript	is	the	most	popular	and	widely	used	implementation	of	ES.

Why	this	weird	name?	 	Ecma	International		is	a	Swiss	standards	association	who	is	in	charge
of	defining	international	standards.

When	JavaScript	was	created,	it	was	presented	by	Netscape	and	Sun	Microsystems	to	Ecma
and	they	gave	it	the	name	ECMA-262	alias	ECMAScript.

This	press	release	by	Netscape	and	Sun	Microsystems	(the	maker	of	Java)	might	help	figure
out	the	name	choice,	which	might	include	legal	and	branding	issues	by	Microsoft	which	was	in
the	committee,	according	to	Wikipedia.

After	IE9,	Microsoft	stopped	branding	its	ES	support	in	browsers	as	JScript	and	started	calling
it	JavaScript	(at	least,	I	could	not	find	references	to	it	any	more)

So	as	of	201x,	the	only	popular	language	supporting	the	ECMAScript	spec	is	JavaScript.

Current	ECMAScript	version
The	current	ECMAScript	version	is	ES2018.

It	was	released	in	June	2018.

What	is	TC39
TC39	is	the	committee	that	evolves	JavaScript.

The	members	of	TC39	are	companies	involved	in	JavaScript	and	browser	vendors,	including
Mozilla,	Google,	Facebook,	Apple,	Microsoft,	Intel,	PayPal,	SalesForce	and	others.

Every	standard	version	proposal	must	go	through	various	stages,	which	are	explained	here.

ES	Versions

Preface

5

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://en.wikipedia.org/wiki/ECMAScript
https://tc39.github.io/process-document/

I	found	it	puzzling	why	sometimes	an	ES	version	is	referenced	by	edition	number	and
sometimes	by	year,	and	I	am	confused	by	the	year	by	chance	being	-1	on	the	number,	which
adds	to	the	general	confusion	around	JS/ES	ܒ

Before	ES2015,	ECMAScript	specifications	were	commonly	called	by	their	edition.	So	ES5	is
the	official	name	for	the	ECMAScript	specification	update	published	in	2009.

Why	does	this	happen?	During	the	process	that	led	to	ES2015,	the	name	was	changed	from
ES6	to	ES2015,	but	since	this	was	done	late,	people	still	referenced	it	as	ES6,	and	the
community	has	not	left	the	edition	naming	behind	-	the	world	is	still	calling	ES	releases	by
edition	number.

This	table	should	clear	things	a	bit:

Edition Official	name Date	published

ES9 ES2018 June	2018

ES8 ES2017 June	2017

ES7 ES2016 June	2016

ES6 ES2015 June	2015

ES5.1 ES5.1 June	2011

ES5 ES5 December	2009

ES4 ES4 Abandoned

ES3 ES3 December	1999

ES2 ES2 June	1998

ES1 ES1 June	1997

Let's	dive	into	the	specific	features	added	to	JavaScript	since	ES5.

Preface

6

ES2015

ES2015

7

let	and	const
Until	ES2015,	 	var		was	the	only	construct	available	for	defining	variables.

var	a	=	0

If	you	forget	to	add	 	var		you	will	be	assigning	a	value	to	an	undeclared	variable,	and	the
results	might	vary.

In	modern	environments,	with	strict	mode	enabled,	you	will	get	an	error.	In	older	environments
(or	with	strict	mode	disabled)	this	will	initialize	the	variable	and	assign	it	to	the	global	object.

If	you	don't	initialize	the	variable	when	you	declare	it,	it	will	have	the	 	undefined		value	until	you
assign	a	value	to	it.

var	a	//typeof	a	===	'undefined'

You	can	redeclare	the	variable	many	times,	overriding	it:

var	a	=	1

var	a	=	2

You	can	also	declare	multiple	variables	at	once	in	the	same	statement:

var	a	=	1,	b	=	2

The	scope	is	the	portion	of	code	where	the	variable	is	visible.

A	variable	initialized	with	 	var		outside	of	any	function	is	assigned	to	the	global	object,	has	a
global	scope	and	is	visible	everywhere.	A	variable	initialized	with	 	var		inside	a	function	is
assigned	to	that	function,	it's	local	and	is	visible	only	inside	it,	just	like	a	function	parameter.

Any	variable	defined	in	a	function	with	the	same	name	as	a	global	variable	takes	precedence
over	the	global	variable,	shadowing	it.

It's	important	to	understand	that	a	block	(identified	by	a	pair	of	curly	braces)	does	not	define	a
new	scope.	A	new	scope	is	only	created	when	a	function	is	created,	because	 	var		does	not
have	block	scope,	but	function	scope.

Inside	a	function,	any	variable	defined	in	it	is	visible	throughout	all	the	function	code,	even	if
the	variable	is	declared	at	the	end	of	the	function	it	can	still	be	referenced	in	the	beginning,
because	JavaScript	before	executing	the	code	actually	moves	all	variables	on	top	(something

let	and	const

8

that	is	called	hoisting).	To	avoid	confusion,	always	declare	variables	at	the	beginning	of	a
function.

Using	 	let	
	let		is	a	new	feature	introduced	in	ES2015	and	it's	essentially	a	block	scoped	version	of
	var	.	Its	scope	is	limited	to	the	block,	statement	or	expression	where	it's	defined,	and	all	the
contained	inner	blocks.

Modern	JavaScript	developers	might	choose	to	only	use	 	let		and	completely	discard	the	use
of	 	var	.

If	 	let		seems	an	obscure	term,	just	read	 	let	color	=	'red'		as	let	the	color	be	red	and	it
all	makes	much	more	sense

Defining	 	let		outside	of	any	function	-	contrary	to	 	var		-	does	not	create	a	global	variable.

Using	 	const	
Variables	declared	with	 	var		or	 	let		can	be	changed	later	on	in	the	program,	and
reassigned.	Once	a	 	const		is	initialized,	its	value	can	never	be	changed	again,	and	it	can't	be
reassigned	to	a	different	value.

const	a	=	'test'

We	can't	assign	a	different	literal	to	the	 	a		const.	We	can	however	mutate	 	a		if	it's	an	object
that	provides	methods	that	mutate	its	contents.

	const		does	not	provide	immutability,	just	makes	sure	that	the	reference	can't	be	changed.

	const		has	block	scope,	same	as	 	let	.

Modern	JavaScript	developers	might	choose	to	always	use	 	const		for	variables	that	don't
need	to	be	reassigned	later	in	the	program,	because	we	should	always	use	the	simplest
construct	available	to	avoid	making	errors	down	the	road.

let	and	const

9

Arrow	Functions
Arrow	functions,	since	their	introduction,	changed	forever	how	JavaScript	code	looks	(and
works).

In	my	opinion	this	change	was	so	welcoming	that	you	now	rarely	see	the	usage	of	the
	function		keyword	in	modern	codebases.	Although	that	has	still	its	usage.

Visually,	it’s	a	simple	and	welcome	change,	which	allows	you	to	write	functions	with	a	shorter
syntax,	from:

const	myFunction	=	function()	{

		//...

}

to

const	myFunction	=	()	=>	{

		//...

}

If	the	function	body	contains	just	a	single	statement,	you	can	omit	the	brackets	and	write	all	on
a	single	line:

const	myFunction	=	()	=>	doSomething()

Parameters	are	passed	in	the	parentheses:

const	myFunction	=	(param1,	param2)	=>	doSomething(param1,	param2)

If	you	have	one	(and	just	one)	parameter,	you	could	omit	the	parentheses	completely:

const	myFunction	=	param	=>	doSomething(param)

Thanks	to	this	short	syntax,	arrow	functions	encourage	the	use	of	small	functions.

Implicit	return
Arrow	functions	allow	you	to	have	an	implicit	return:	values	are	returned	without	having	to	use
the	 	return		keyword.

Arrow	Functions

10

It	works	when	there	is	a	one-line	statement	in	the	function	body:

const	myFunction	=	()	=>	'test'

myFunction()	//'test'

Another	example,	when	returning	an	object,	remember	to	wrap	the	curly	brackets	in
parentheses	to	avoid	it	being	considered	the	wrapping	function	body	brackets:

const	myFunction	=	()	=>	({	value:	'test'	})

myFunction()	//{value:	'test'}

How	 	this		works	in	arrow	functions
	this		is	a	concept	that	can	be	complicated	to	grasp,	as	it	varies	a	lot	depending	on	the
context	and	also	varies	depending	on	the	mode	of	JavaScript	(strict	mode	or	not).

It's	important	to	clarify	this	concept	because	arrow	functions	behave	very	differently	compared
to	regular	functions.

When	defined	as	a	method	of	an	object,	in	a	regular	function	 	this		refers	to	the	object,	so	you
can	do:

const	car	=	{

		model:	'Fiesta',

		manufacturer:	'Ford',

		fullName:	function()	{

				return	`${this.manufacturer}	${this.model}`

		}

}

calling	 	car.fullName()		will	return	 	"Ford	Fiesta"	.

The	 	this		scope	with	arrow	functions	is	inherited	from	the	execution	context.	An	arrow
function	does	not	bind	 	this		at	all,	so	its	value	will	be	looked	up	in	the	call	stack,	so	in	this
code	 	car.fullName()		will	not	work,	and	will	return	the	string	 	"undefined	undefined"	:

const	car	=	{

		model:	'Fiesta',

		manufacturer:	'Ford',

		fullName:	()	=>	{

				return	`${this.manufacturer}	${this.model}`

		}

}

Arrow	Functions

11

Due	to	this,	arrow	functions	are	not	suited	as	object	methods.

Arrow	functions	cannot	be	used	as	constructors	either,	when	instantiating	an	object	will	raise	a
	TypeError	.

This	is	where	regular	functions	should	be	used	instead,	when	dynamic	context	is	not
needed.

This	is	also	a	problem	when	handling	events.	DOM	Event	listeners	set	 	this		to	be	the	target
element,	and	if	you	rely	on	 	this		in	an	event	handler,	a	regular	function	is	necessary:

const	link	=	document.querySelector('#link')

link.addEventListener('click',	()	=>	{

		//	this	===	window

})

const	link	=	document.querySelector('#link')

link.addEventListener('click',	function()	{

		//	this	===	link

})

Arrow	Functions

12

Classes
JavaScript	has	a	quite	uncommon	way	to	implement	inheritance:	prototypical	inheritance.
Prototypal	inheritance,	while	in	my	opinion	great,	is	unlike	most	other	popular	programming
language's	implementation	of	inheritance,	which	is	class-based.

People	coming	from	Java	or	Python	or	other	languages	had	a	hard	time	understanding	the
intricacies	of	prototypal	inheritance,	so	the	ECMAScript	committee	decided	to	sprinkle
syntactic	sugar	on	top	of	prototypical	inheritance	so	that	it	resembles	how	class-based
inheritance	works	in	other	popular	implementations.

This	is	important:	JavaScript	under	the	hood	is	still	the	same,	and	you	can	access	an	object
prototype	in	the	usual	way.

A	class	definition
This	is	how	a	class	looks.

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		hello()	{

				return	'Hello,	I	am	'	+	this.name	+	'.'

		}

}

A	class	has	an	identifier,	which	we	can	use	to	create	new	objects	using	 	new
ClassIdentifier()	.

When	the	object	is	initialized,	the	 	constructor		method	is	called,	with	any	parameters	passed.

A	class	also	has	as	many	methods	as	it	needs.	In	this	case	 	hello		is	a	method	and	can	be
called	on	all	objects	derived	from	this	class:

const	flavio	=	new	Person('Flavio')

flavio.hello()

Class	inheritance

Classes

13

https://flaviocopes.com/javascript-prototypal-inheritance/

A	class	can	extend	another	class,	and	objects	initialized	using	that	class	inherit	all	the
methods	of	both	classes.

If	the	inherited	class	has	a	method	with	the	same	name	as	one	of	the	classes	higher	in	the
hierarchy,	the	closest	method	takes	precedence:

class	Programmer	extends	Person	{

		hello()	{

				return	super.hello()	+	'	I	am	a	programmer.'

		}

}

const	flavio	=	new	Programmer('Flavio')

flavio.hello()

(the	above	program	prints	"Hello,	I	am	Flavio.	I	am	a	programmer.")

Classes	do	not	have	explicit	class	variable	declarations,	but	you	must	initialize	any	variable	in
the	constructor.

Inside	a	class,	you	can	reference	the	parent	class	calling	 	super()	.

Static	methods
Normally	methods	are	defined	on	the	instance,	not	on	the	class.

Static	methods	are	executed	on	the	class	instead:

class	Person	{

		static	genericHello()	{

				return	'Hello'

		}

}

Person.genericHello()	//Hello

Private	methods
JavaScript	does	not	have	a	built-in	way	to	define	private	or	protected	methods.

There	are	workarounds,	but	I	won't	describe	them	here.

Getters	and	setters

Classes

14

You	can	add	methods	prefixed	with	 	get		or	 	set		to	create	a	getter	and	setter,	which	are	two
different	pieces	of	code	that	are	executed	based	on	what	you	are	doing:	accessing	the
variable,	or	modifying	its	value.

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		set	name(value)	{

				this.name	=	value

		}

		get	name()	{

				return	this.name

		}

}

If	you	only	have	a	getter,	the	property	cannot	be	set,	and	any	attempt	at	doing	so	will	be
ignored:

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		get	name()	{

				return	this.name

		}

}

If	you	only	have	a	setter,	you	can	change	the	value	but	not	access	it	from	the	outside:

class	Person	{

		constructor(name)	{

				this.name	=	name

		}

		set	name(value)	{

				this.name	=	value

		}

}

Classes

15

Default	parameters
Default	parameter	values	have	been	introduced	in	ES2015,	and	are	widely	implemented	in
modern	browsers.

This	is	a	 	doSomething		function	which	accepts	 	param1	.

const	doSomething	=	(param1)	=>	{

}

We	can	add	a	default	value	for	 	param1		if	the	function	is	invoked	without	specifying	a
parameter:

const	doSomething	=	(param1	=	'test')	=>	{

}

This	works	for	more	parameters	as	well,	of	course:

const	doSomething	=	(param1	=	'test',	param2	=	'test2')	=>	{

}

What	if	you	have	an	unique	object	with	parameters	values	in	it?

Once	upon	a	time,	if	we	had	to	pass	an	object	of	options	to	a	function,	in	order	to	have	default
values	of	those	options	if	one	of	them	was	not	defined,	you	had	to	add	a	little	bit	of	code	inside
the	function:

const	colorize	=	(options)	=>	{

		if	(!options)	{

				options	=	{}

		}

		const	color	=	('color'	in	options)	?	options.color	:	'yellow'

		...

}

With	destructuring	you	can	provide	default	values,	which	simplifies	the	code	a	lot:

const	colorize	=	({	color	=	'yellow'	})	=>	{

		...

}

Default	parameters

16

If	no	object	is	passed	when	calling	our	 	colorize		function,	similarly	we	can	assign	an	empty
object	by	default:

const	spin	=	({	color	=	'yellow'	}	=	{})	=>	{

		...

}

Default	parameters

17

Template	Literals
Template	Literals	allow	you	to	work	with	strings	in	a	novel	way	compared	to	ES5	and	below.

The	syntax	at	a	first	glance	is	very	simple,	just	use	backticks	instead	of	single	or	double
quotes:

const	a_string	=	`something`

They	are	unique	because	they	provide	a	lot	of	features	that	normal	strings	built	with	quotes	do
not,	in	particular:

they	offer	a	great	syntax	to	define	multiline	strings
they	provide	an	easy	way	to	interpolate	variables	and	expressions	in	strings
they	allow	you	to	create	DSLs	with	template	tags	(DSL	means	domain	specific	language,
and	it's	for	example	used	in	React	by	Styled	Components,	to	define	CSS	for	a
component)

Let's	dive	into	each	of	these	in	detail.

Multiline	strings
Pre-ES6,	to	create	a	string	spanning	over	two	lines	you	had	to	use	the	 	\		character	at	the	end
of	a	line:

const	string	=

		'first	part	\

second	part'

This	allows	to	create	a	string	on	2	lines,	but	it's	rendered	on	just	one	line:

	first	part	second	part	

To	render	the	string	on	multiple	lines	as	well,	you	explicitly	need	to	add	 	\n		at	the	end	of	each
line,	like	this:

const	string	=

		'first	line\n	\

second	line'

or

Template	Literals

18

const	string	=	'first	line\n'	+	'second	line'

Template	literals	make	multiline	strings	much	simpler.

Once	a	template	literal	is	opened	with	the	backtick,	you	just	press	enter	to	create	a	new	line,
with	no	special	characters,	and	it's	rendered	as-is:

const	string	=	`Hey

this

string

is	awesome!`

Keep	in	mind	that	space	is	meaningful,	so	doing	this:

const	string	=	`First

																Second`

is	going	to	create	a	string	like	this:

First

																Second

an	easy	way	to	fix	this	problem	is	by	having	an	empty	first	line,	and	appending	the	trim()
method	right	after	the	closing	backtick,	which	will	eliminate	any	space	before	the	first
character:

const	string	=	`

First

Second`.trim()

Interpolation
Template	literals	provide	an	easy	way	to	interpolate	variables	and	expressions	into	strings.

You	do	so	by	using	the	 	${...}		syntax:

const	var	=	'test'

const	string	=	`something	${var}`	//something	test

inside	the	 	${}		you	can	add	anything,	even	expressions:

Template	Literals

19

const	string	=	`something	${1	+	2	+	3}`

const	string2	=	`something	${foo()	?	'x'	:	'y'}`

Template	tags
Tagged	templates	is	one	feature	that	might	sound	less	useful	at	first	for	you,	but	it's	actually
used	by	lots	of	popular	libraries	around,	like	Styled	Components	or	Apollo,	the	GraphQL
client/server	lib,	so	it's	essential	to	understand	how	it	works.

In	Styled	Components	template	tags	are	used	to	define	CSS	strings:

const	Button	=	styled.button`

		font-size:	1.5em;

		background-color:	black;

		color:	white;

`

In	Apollo	template	tags	are	used	to	define	a	GraphQL	query	schema:

const	query	=	gql`

		query	{

				...

		}

`

The	 	styled.button		and	 	gql		template	tags	highlighted	in	those	examples	are	just	functions:

function	gql(literals,	...expressions)	{}

this	function	returns	a	string,	which	can	be	the	result	of	any	kind	of	computation.

	literals		is	an	array	containing	the	template	literal	content	tokenized	by	the	expressions
interpolations.

	expressions		contains	all	the	interpolations.

If	we	take	an	example	above:

const	string	=	`something	${1	+	2	+	3}`

	literals		is	an	array	with	two	items.	The	first	is	 	something	,	the	string	until	the	first
interpolation,	and	the	second	is	an	empty	string,	the	space	between	the	end	of	the	first
interpolation	(we	only	have	one)	and	the	end	of	the	string.

Template	Literals

20

	expressions		in	this	case	is	an	array	with	a	single	item,	 	6	.

A	more	complex	example	is:

const	string	=	`something

another	${'x'}

new	line	${1	+	2	+	3}

test`

in	this	case	 	literals		is	an	array	where	the	first	item	is:

;`something

another	`

the	second	is:

;`

new	line	`

and	the	third	is:

;`

test`

	expressions		in	this	case	is	an	array	with	two	items,	 	x		and	 	6	.

The	function	that	is	passed	those	values	can	do	anything	with	them,	and	this	is	the	power	of
this	kind	feature.

The	most	simple	example	is	replicating	what	the	string	interpolation	does,	by	joining	 	literals	
and	 	expressions	:

const	interpolated	=	interpolate`I	paid	${10}€`

and	this	is	how	 	interpolate		works:

function	interpolate(literals,	...expressions)	{

		let	string	=	``

		for	(const	[i,	val]	of	expressions)	{

				string	+=	literals[i]	+	val

		}

		string	+=	literals[literals.length	-	1]

		return	string

}

Template	Literals

21

Template	Literals

22

Destructuring	assignments
Given	an	object,	you	can	extract	just	some	values	and	put	them	into	named	variables:

const	person	=	{

		firstName:	'Tom',

		lastName:	'Cruise',

		actor:	true,

		age:	54,	//made	up

}

const	{firstName:	name,	age}	=	person

	name		and	 	age		contain	the	desired	values.

The	syntax	also	works	on	arrays:

const	a	=	[1,2,3,4,5]

const	[first,	second]	=	a

This	statement	creates	3	new	variables	by	getting	the	items	with	index	0,	1,	4	from	the	array
	a	:

const	[first,	second,	,	,	fifth]	=	a

Destructuring	assignments

23

Enhanced	Object	Literals
In	ES2015	Object	Literals	gained	superpowers.

Simpler	syntax	to	include	variables

Instead	of	doing

const	something	=	'y'

const	x	=	{

		something:	something

}

you	can	do

const	something	=	'y'

const	x	=	{

		something

}

Prototype

A	prototype	can	be	specified	with

const	anObject	=	{	y:	'y'	}

const	x	=	{

		__proto__:	anObject

}

super()

const	anObject	=	{	y:	'y',	test:	()	=>	'zoo'	}

const	x	=	{

		__proto__:	anObject,

		test()	{

				return	super.test()	+	'x'

		}

}

x.test()	//zoox

Dynamic	properties

const	x	=	{

Enhanced	Object	Literals

24

		['a'	+	'_'	+	'b']:	'z'

}

x.a_b	//z

Enhanced	Object	Literals

25

For-of	loop
ES5	back	in	2009	introduced	 	forEach()		loops.	While	nice,	they	offered	no	way	to	break,	like
	for		loops	always	did.

ES2015	introduced	the	 	for-of		loop,	which	combines	the	conciseness	of	 	forEach		with	the
ability	to	break:

//iterate	over	the	value

for	(const	v	of	['a',	'b',	'c'])	{

		console.log(v);

}

//get	the	index	as	well,	using	`entries()`

for	(const	[i,	v]	of	['a',	'b',	'c'].entries())	{

		console.log(index)	//index

		console.log(value)	//value

}

Notice	the	use	of	 	const	.	This	loop	creates	a	new	scope	in	every	iteration,	so	we	can	safely
use	that	instead	of	 	let	.

The	difference	with	 	for...in		is:

	for...of		iterates	over	the	property	values
	for...in		iterates	the	property	names

For-of	loop

26

Promises
A	promise	is	commonly	defined	as	a	proxy	for	a	value	that	will	eventually	become
available.

Promises	are	one	way	to	deal	with	asynchronous	code,	without	writing	too	many	callbacks	in
your	code.

Async	functions	use	the	promises	API	as	their	building	block,	so	understanding	them	is
fundamental	even	if	in	newer	code	you'll	likely	use	async	functions	instead	of	promises.

How	promises	work,	in	brief
Once	a	promise	has	been	called,	it	will	start	in	pending	state.	This	means	that	the	caller
function	continues	the	execution,	while	it	waits	for	the	promise	to	do	its	own	processing,	and
give	the	caller	function	some	feedback.

At	this	point,	the	caller	function	waits	for	it	to	either	return	the	promise	in	a	resolved	state,	or
in	a	rejected	state,	but	as	you	know	JavaScript	is	asynchronous,	so	the	function	continues	its
execution	while	the	promise	does	it	work.

Which	JS	API	use	promises?
In	addition	to	your	own	code	and	library	code,	promises	are	used	by	standard	modern	Web
APIs	such	as:

the	Battery	API
the	Fetch	API
Service	Workers

It's	unlikely	that	in	modern	JavaScript	you'll	find	yourself	not	using	promises,	so	let's	start
diving	right	into	them.

Creating	a	promise
The	Promise	API	exposes	a	Promise	constructor,	which	you	initialize	using	 	new	Promise()	:

let	done	=	true

const	isItDoneYet	=	new	Promise((resolve,	reject)	=>	{

		if	(done)	{

Promises

27

https://flaviocopes.com/javascript/
https://flaviocopes.com/fetch-api/
https://flaviocopes.com/service-workers/

				const	workDone	=	'Here	is	the	thing	I	built'

				resolve(workDone)

		}	else	{

				const	why	=	'Still	working	on	something	else'

				reject(why)

		}

})

As	you	can	see	the	promise	checks	the	 	done		global	constant,	and	if	that's	true,	we	return	a
resolved	promise,	otherwise	a	rejected	promise.

Using	 	resolve		and	 	reject		we	can	communicate	back	a	value,	in	the	above	case	we	just
return	a	string,	but	it	could	be	an	object	as	well.

Consuming	a	promise
In	the	last	section,	we	introduced	how	a	promise	is	created.

Now	let's	see	how	the	promise	can	be	consumed	or	used.

const	isItDoneYet	=	new	Promise()

//...

const	checkIfItsDone	=	()	=>	{

		isItDoneYet

				.then(ok	=>	{

						console.log(ok)

				})

				.catch(err	=>	{

						console.error(err)

				})

}

Running	 	checkIfItsDone()		will	execute	the	 	isItDoneYet()		promise	and	will	wait	for	it	to
resolve,	using	the	 	then		callback,	and	if	there	is	an	error,	it	will	handle	it	in	the	 	catch	
callback.

Chaining	promises
A	promise	can	be	returned	to	another	promise,	creating	a	chain	of	promises.

A	great	example	of	chaining	promises	is	given	by	the	Fetch	API,	a	layer	on	top	of	the
XMLHttpRequest	API,	which	we	can	use	to	get	a	resource	and	queue	a	chain	of	promises	to
execute	when	the	resource	is	fetched.

Promises

28

https://flaviocopes.com/fetch-api

The	Fetch	API	is	a	promise-based	mechanism,	and	calling	 	fetch()		is	equivalent	to	defining
our	own	promise	using	 	new	Promise()	.

Example	of	chaining	promises

const	status	=	response	=>	{

		if	(response.status	>=	200	&&	response.status	<	300)	{

				return	Promise.resolve(response)

		}

		return	Promise.reject(new	Error(response.statusText))

}

const	json	=	response	=>	response.json()

fetch('/todos.json')

		.then(status)

		.then(json)

		.then(data	=>	{

				console.log('Request	succeeded	with	JSON	response',	data)

		})

		.catch(error	=>	{

				console.log('Request	failed',	error)

		})

In	this	example,	we	call	 	fetch()		to	get	a	list	of	TODO	items	from	the	 	todos.json		file	found	in
the	domain	root,	and	we	create	a	chain	of	promises.

Running	 	fetch()		returns	a	response,	which	has	many	properties,	and	within	those	we
reference:

	status	,	a	numeric	value	representing	the	HTTP	status	code
	statusText	,	a	status	message,	which	is	 	OK		if	the	request	succeeded

	response		also	has	a	 	json()		method,	which	returns	a	promise	that	will	resolve	with	the
content	of	the	body	processed	and	transformed	into	JSON.

So	given	those	premises,	this	is	what	happens:	the	first	promise	in	the	chain	is	a	function	that
we	defined,	called	 	status()	,	that	checks	the	response	status	and	if	it's	not	a	success
response	(between	200	and	299),	it	rejects	the	promise.

This	operation	will	cause	the	promise	chain	to	skip	all	the	chained	promises	listed	and	will	skip
directly	to	the	 	catch()		statement	at	the	bottom,	logging	the	 	Request	failed		text	along	with
the	error	message.

If	that	succeeds	instead,	it	calls	the	json()	function	we	defined.	Since	the	previous	promise,
when	successful,	returned	the	 	response		object,	we	get	it	as	an	input	to	the	second	promise.

Promises

29

https://fetch.spec.whatwg.org/#concept-response

In	this	case,	we	return	the	data	JSON	processed,	so	the	third	promise	receives	the	JSON
directly:

.then((data)	=>	{

		console.log('Request	succeeded	with	JSON	response',	data)

})

and	we	log	it	to	the	console.

Handling	errors
In	the	above	example,	in	the	previous	section,	we	had	a	 	catch		that	was	appended	to	the
chain	of	promises.

When	anything	in	the	chain	of	promises	fails	and	raises	an	error	or	rejects	the	promise,	the
control	goes	to	the	nearest	 	catch()		statement	down	the	chain.

new	Promise((resolve,	reject)	=>	{

		throw	new	Error('Error')

}).catch(err	=>	{

		console.error(err)

})

//	or

new	Promise((resolve,	reject)	=>	{

		reject('Error')

}).catch(err	=>	{

		console.error(err)

})

Cascading	errors
If	inside	the	 	catch()		you	raise	an	error,	you	can	append	a	second	 	catch()		to	handle	it,	and
so	on.

new	Promise((resolve,	reject)	=>	{

		throw	new	Error('Error')

})

		.catch(err	=>	{

				throw	new	Error('Error')

		})

		.catch(err	=>	{

				console.error(err)

		})

Promises

30

Orchestrating	promises

	Promise.all()	

If	you	need	to	synchronize	different	promises,	 	Promise.all()		helps	you	define	a	list	of
promises,	and	execute	something	when	they	are	all	resolved.

Example:

const	f1	=	fetch('/something.json')

const	f2	=	fetch('/something2.json')

Promise.all([f1,	f2])

		.then(res	=>	{

				console.log('Array	of	results',	res)

		})

		.catch(err	=>	{

				console.error(err)

		})

The	ES2015	destructuring	assignment	syntax	allows	you	to	also	do

Promise.all([f1,	f2]).then(([res1,	res2])	=>	{

		console.log('Results',	res1,	res2)

})

You	are	not	limited	to	using	 	fetch		of	course,	any	promise	is	good	to	go.

	Promise.race()	

	Promise.race()		runs	as	soon	as	one	of	the	promises	you	pass	to	it	resolves,	and	it	runs	the
attached	callback	just	once	with	the	result	of	the	first	promise	resolved.

Example:

const	promiseOne	=	new	Promise((resolve,	reject)	=>	{

		setTimeout(resolve,	500,	'one')

})

const	promiseTwo	=	new	Promise((resolve,	reject)	=>	{

		setTimeout(resolve,	100,	'two')

})

Promise.race([promiseOne,	promiseTwo]).then(result	=>	{

		console.log(result)	//	'two'

})

Promises

31

Common	errors

Uncaught	TypeError:	undefined	is	not	a	promise

If	you	get	the	 	Uncaught	TypeError:	undefined	is	not	a	promise		error	in	the	console,	make	sure
you	use	 	new	Promise()		instead	of	just	 	Promise()	

Promises

32

Modules
ES	Modules	is	the	ECMAScript	standard	for	working	with	modules.

While	Node.js	has	been	using	the	CommonJS	standard	for	years,	the	browser	never	had	a
module	system,	as	every	major	decision	such	as	a	module	system	must	be	first	standardized
by	ECMAScript	and	then	implemented	by	the	browser.

This	standardization	process	completed	with	ES2015	and	browsers	started	implementing	this
standard	trying	to	keep	everything	well	aligned,	working	all	in	the	same	way,	and	now	ES
Modules	are	supported	in	Chrome,	Safari,	Edge	and	Firefox	(since	version	60).

Modules	are	very	cool,	because	they	let	you	encapsulate	all	sorts	of	functionality,	and	expose
this	functionality	to	other	JavaScript	files,	as	libraries.

The	ES	Modules	Syntax
The	syntax	to	import	a	module	is:

import	package	from	'module-name'

while	CommonJS	uses

const	package	=	require('module-name')

A	module	is	a	JavaScript	file	that	exports	one	or	more	values	(objects,	functions	or	variables),
using	the	 	export		keyword.	For	example,	this	module	exports	a	function	that	returns	a	string
uppercase:

uppercase.js

export	default	str	=>	str.toUpperCase()

In	this	example,	the	module	defines	a	single,	default	export,	so	it	can	be	an	anonymous
function.	Otherwise	it	would	need	a	name	to	distinguish	it	from	other	exports.

Now,	any	other	JavaScript	module	can	import	the	functionality	offered	by	uppercase.js	by
importing	it.

An	HTML	page	can	add	a	module	by	using	a	 	<script>		tag	with	the	special	 	type="module"	
attribute:

Modules

33

<script	type="module"	src="index.js"></script>

Note:	this	module	import	behaves	like	a	 	defer		script	load.	See	efficiently	load
JavaScript	with	defer	and	async

It's	important	to	note	that	any	script	loaded	with	 	type="module"		is	loaded	in	strict	mode.

In	this	example,	the	 	uppercase.js		module	defines	a	default	export,	so	when	we	import	it,	we
can	assign	it	a	name	we	prefer:

import	toUpperCase	from	'./uppercase.js'

and	we	can	use	it:

toUpperCase('test')	//'TEST'

You	can	also	use	an	absolute	path	for	the	module	import,	to	reference	modules	defined	on
another	domain:

import	toUpperCase	from	'https://flavio-es-modules-example.glitch.me/uppercase.js'

This	is	also	valid	import	syntax:

import	{	toUpperCase	}	from	'/uppercase.js'

import	{	toUpperCase	}	from	'../uppercase.js'

This	is	not:

import	{	toUpperCase	}	from	'uppercase.js'

import	{	toUpperCase	}	from	'utils/uppercase.js'

It's	either	absolute,	or	has	a	 	./		or	 	/		before	the	name.

Other	import/export	options
We	saw	this	example	above:

export	default	str	=>	str.toUpperCase()

Modules

34

https://flaviocopes.com/javascript-async-defer/

This	creates	one	default	export.	In	a	file	however	you	can	export	more	than	one	thing,	by	using
this	syntax:

const	a	=	1

const	b	=	2

const	c	=	3

export	{	a,	b,	c	}

Another	module	can	import	all	those	exports	using

import	*	from	'module'

You	can	import	just	a	few	of	those	exports,	using	the	destructuring	assignment:

import	{	a	}	from	'module'

import	{	a,	b	}	from	'module'

You	can	rename	any	import,	for	convenience,	using	 	as	:

import	{	a,	b	as	two	}	from	'module'

You	can	import	the	default	export,	and	any	non-default	export	by	name,	like	in	this	common
React	import:

import	React,	{	Component	}	from	'react'

You	can	see	an	ES	Modules	example	here:	https://glitch.com/edit/#!/flavio-es-modules-
example?path=index.html

CORS
Modules	are	fetched	using	CORS.	This	means	that	if	you	reference	scripts	from	other
domains,	they	must	have	a	valid	CORS	header	that	allows	cross-site	loading	(like	 	Access-
Control-Allow-Origin:	*)

What	about	browsers	that	do	not	support
modules?
Use	a	combination	of	 	type="module"		and	 	nomodule	:

Modules

35

https://glitch.com/edit/#!/flavio-es-modules-example?path=index.html

<script	type="module"	src="module.js"></script>

<script	nomodule	src="fallback.js"></script>

Conclusion
ES	Modules	are	one	of	the	biggest	features	introduced	in	modern	browsers.	They	are	part	of
ES6	but	the	road	to	implement	them	has	been	long.

We	can	now	use	them!	But	we	must	also	remember	that	having	more	than	a	few	modules	is
going	to	have	a	performance	hit	on	our	pages,	as	it's	one	more	step	that	the	browser	must
perform	at	runtime.

Webpack	is	probably	going	to	still	be	a	huge	player	even	if	ES	Modules	land	in	the	browser,
but	having	such	a	feature	directly	built	in	the	language	is	huge	for	a	unification	of	how	modules
work	client-side	and	on	Node.js	as	well.

Modules

36

New	String	methods
Any	string	value	got	some	new	instance	methods:

	repeat()	

	codePointAt()	

repeat()
Repeats	the	strings	for	the	specificed	number	of	times:

'Ho'.repeat(3)	//'HoHoHo'

Returns	an	empty	string	if	there	is	no	parameter,	or	the	parameter	is	 	0	.	If	the	parameter	is
negative	you'll	get	a	RangeError.

codePointAt()
This	method	can	be	used	to	handle	Unicode	characters	that	cannot	be	represented	by	a	single
16-bit	Unicode	unit,	but	need	2	instead.

Using	 	charCodeAt()		you	need	to	retrieve	the	first,	and	the	second,	and	combine	them.	Using
	codePointAt()		you	get	the	whole	character	in	one	call.

For	example,	this	chinese	character	"꺽"	is	composed	by	2	UTF-16	(Unicode)	parts:

"꺽".charCodeAt(0).toString(16)	//d842

"꺽".charCodeAt(1).toString(16)	//dfb7

If	you	create	a	new	character	by	combining	those	unicode	characters:

"\ud842\udfb7"	//"꺽"

You	can	get	the	same	result	usign	 	codePointAt()	:

"꺽".codePointAt(0)	//20bb7

If	you	create	a	new	character	by	combining	those	unicode	characters:

"\u{20bb7}"	//"꺽"

New	String	methods

37

More	on	Unicode	and	working	with	it	in	my	Unicode	guide:	https://flaviocopes.com/unicode/

New	String	methods

38

https://flaviocopes.com/unicode/

New	Object	methods
ES6	introduced	several	static	methods	under	the	Object	namespace:

	Object.is()		determines	if	two	values	are	the	same	value
	Object.assign()		used	to	shallow	copy	an	object
	Object.setPrototypeOf		sets	an	object	prototype

Object.is()
This	methods	aims	to	help	comparing	values.

Usage:

Object.is(a,	b)

The	result	is	always	 	false		unless:

	a		and	 	b		are	the	same	exact	object
	a		and	 	b		are	equal	strings	(strings	are	equal	when	composed	by	the	same	characters)
	a		and	 	b		are	equal	numbers	(numbers	are	equal	when	their	value	is	equal)
	a		and	 	b		are	both	 	undefined	,	both	 	null	,	both	 	NaN	,	both	 	true		or	both	 	false	

	0		and	 	-0		are	different	values	in	JavaScript,	so	pay	attention	in	this	special	case	(convert	all
to	 	+0		using	the	 	+		unary	operator	before	comparing,	for	example).

Object.assign()
Introduced	in	 	ES2015	,	this	method	copies	all	the	enumerable	own	properties	of	one	or	more
objects	into	another.

Its	primary	use	case	is	to	create	a	shallow	copy	of	an	object.

const	copied	=	Object.assign({},	original)

Being	a	shallow	copy,	values	are	cloned,	and	objects	references	are	copied	(not	the	objects
themselves),	so	if	you	edit	an	object	property	in	the	original	object,	that's	modified	also	in	the
copied	object,	since	the	referenced	inner	object	is	the	same:

const	original	=	{

		name:	'Fiesta',

New	Object	methods

39

		car:	{

				color:	'blue'

		}

}

const	copied	=	Object.assign({},	original)

original.name	=	'Focus'

original.car.color	=	'yellow'

copied.name	//Fiesta

copied.car.color	//yellow

I	mentioned	"one	or	more":

const	wisePerson	=	{

		isWise:	true

}

const	foolishPerson	=	{

		isFoolish:	true

}

const	wiseAndFoolishPerson	=	Object.assign({},	wisePerson,	foolishPerson)

console.log(wiseAndFoolishPerson)	//{	isWise:	true,	isFoolish:	true	}

Object.setPrototypeOf()
Set	the	prototype	of	an	object.	Accepts	two	arguments:	the	object	and	the	prototype.

Usage:

Object.setPrototypeOf(object,	prototype)

Example:

const	animal	=	{

		isAnimal:	true

}

const	mammal	=	{

		isMammal:	true

}

mammal.__proto__	=	animal

mammal.isAnimal	//true

const	dog	=	Object.create(animal)

dog.isAnimal		//true

console.log(dog.isMammal)		//undefined

New	Object	methods

40

Object.setPrototypeOf(dog,	mammal)

dog.isAnimal	//true

dog.isMammal	//true

New	Object	methods

41

The	spread	operator
You	can	expand	an	array,	an	object	or	a	string	using	the	spread	operator	

Let's	start	with	an	array	example.	Given

const	a	=	[1,	2,	3]

you	can	create	a	new	array	using

const	b	=	[...a,	4,	5,	6]

You	can	also	create	a	copy	of	an	array	using

const	c	=	[...a]

This	works	for	objects	as	well.	Clone	an	object	with:

const	newObj	=	{	...oldObj	}

Using	strings,	the	spread	operator	creates	an	array	with	each	char	in	the	string:

const	hey	=	'hey'

const	arrayized	=	[...hey]	//	['h',	'e',	'y']

This	operator	has	some	pretty	useful	applications.	The	most	important	one	is	the	ability	to	use
an	array	as	function	argument	in	a	very	simple	way:

const	f	=	(foo,	bar)	=>	{}

const	a	=	[1,	2]

f(...a)

(in	the	past	you	could	do	this	using	 	f.apply(null,	a)		but	that's	not	as	nice	and	readable)

The	rest	element	is	useful	when	working	with	array	destructuring:

const	numbers	=	[1,	2,	3,	4,	5]

[first,	second,	...others]	=	numbers

and	spread	elements:

The	spread	operator

42

const	numbers	=	[1,	2,	3,	4,	5]

const	sum	=	(a,	b,	c,	d,	e)	=>	a	+	b	+	c	+	d	+	e

const	sum	=	sum(...numbers)

ES2018	introduces	rest	properties,	which	are	the	same	but	for	objects.

Rest	properties:

const	{	first,	second,	...others	}	=	{

		first:	1,

		second:	2,

		third:	3,

		fourth:	4,

		fifth:	5

}

first	//	1

second	//	2

others	//	{	third:	3,	fourth:	4,	fifth:	5	}

Spread	properties	allow	to	create	a	new	object	by	combining	the	properties	of	the	object
passed	after	the	spread	operator:

const	items	=	{	first,	second,	...others	}

items	//{	first:	1,	second:	2,	third:	3,	fourth:	4,	fifth:	5	}

The	spread	operator

43

Set
A	Set	data	structure	allows	to	add	data	to	a	container.

A	Set	is	a	collection	of	objects	or	primitive	types	(strings,	numbers	or	booleans),	and	you	can
think	of	it	as	a	Map	where	values	are	used	as	map	keys,	with	the	map	value	always	being	a
boolean	true.

Initialize	a	Set
A	Set	is	initialized	by	calling:

const	s	=	new	Set()

Add	items	to	a	Set

You	can	add	items	to	the	Set	by	using	the	 	add		method:

s.add('one')

s.add('two')

A	set	only	stores	unique	elements,	so	calling	 	s.add('one')		multiple	times	won't	add	new
items.

You	can't	add	multiple	elements	to	a	set	at	the	same	time.	You	need	to	call	 	add()		multiple
times.

Check	if	an	item	is	in	the	set

Once	an	element	is	in	the	set,	we	can	check	if	the	set	contains	it:

s.has('one')	//true

s.has('three')	//false

Delete	an	item	from	a	Set	by	key

Use	the	 	delete()		method:

s.delete('one')

Set

44

Determine	the	number	of	items	in	a	Set

Use	the	 	size		property:

s.size

Delete	all	items	from	a	Set

Use	the	 	clear()		method:

s.clear()

Iterate	the	items	in	a	Set

Use	the	 	keys()		or	 	values()		methods	-	they	are	equivalent:

for	(const	k	of	s.keys())	{

		console.log(k)

}

for	(const	k	of	s.values())	{

		console.log(k)

}

The	 	entries()		method	returns	an	iterator,	which	you	can	use	like	this:

const	i	=	s.entries()

console.log(i.next())

calling	 	i.next()		will	return	each	element	as	a	 	{	value,	done	=	false	}		object	until	the
iterator	ends,	at	which	point	 	done		is	 	true	.

You	can	also	use	the	forEach()	method	on	the	set:

s.forEach(v	=>	console.log(v))

or	you	can	just	use	the	set	in	a	for..of	loop:

for	(const	k	of	s)	{

		console.log(k)

}

Set

45

Initialize	a	Set	with	values
You	can	initialize	a	Set	with	a	set	of	values:

const	s	=	new	Set([1,	2,	3,	4])

Convert	to	array

Convert	the	Set	keys	into	an	array

const	a	=	[...s.keys()]

//	or

const	a	=	[...s.values()]

A	WeakSet
A	WeakSet	is	a	special	kind	of	Set.

In	a	Set,	items	are	never	garbage	collected.	A	WeakSet	instead	lets	all	its	items	be	freely
garbage	collected.	Every	key	of	a	WeakSet	is	an	object.	When	the	reference	to	this	object	is
lost,	the	value	can	be	garbage	collected.

Here	are	the	main	differences:

1.	 you	cannot	iterate	over	the	WeakSet
2.	 you	cannot	clear	all	items	from	a	WeakSet
3.	 you	cannot	check	its	size

A	WeakSet	is	generally	used	by	framework-level	code,	and	only	exposes	these	methods:

add()
has()
delete()

Set

46

Map
A	Map	data	structure	allows	to	associate	data	to	a	key.

Before	ES6
Before	its	introduction,	people	generally	used	objects	as	maps,	by	associating	some	object	or
value	to	a	specific	key	value:

const	car	=	{}

car['color']	=	'red'

car.owner	=	'Flavio'

console.log(car['color'])	//red

console.log(car.color)	//red

console.log(car.owner)	//Flavio

console.log(car['owner'])	//Flavio

Enter	Map
ES6	introduced	the	Map	data	structure,	providing	us	a	proper	tool	to	handle	this	kind	of	data
organization.

A	Map	is	initialized	by	calling:

const	m	=	new	Map()

Add	items	to	a	Map

You	can	add	items	to	the	map	by	using	the	 	set		method:

m.set('color',	'red')

m.set('age',	2)

Get	an	item	from	a	map	by	key

And	you	can	get	items	out	of	a	map	by	using	 	get	:

const	color	=	m.get('color')

const	age	=	m.get('age')

Map

47

Delete	an	item	from	a	map	by	key

Use	the	 	delete()		method:

m.delete('color')

Delete	all	items	from	a	map

Use	the	 	clear()		method:

m.clear()

Check	if	a	map	contains	an	item	by	key

Use	the	 	has()		method:

const	hasColor	=	m.has('color')

Find	the	number	of	items	in	a	map

Use	the	 	size		property:

const	size	=	m.size

Initialize	a	map	with	values
You	can	initialize	a	map	with	a	set	of	values:

const	m	=	new	Map([['color',	'red'],	['owner',	'Flavio'],	['age',	2]])

Map	keys
Just	like	any	value	(object,	array,	string,	number)	can	be	used	as	the	value	of	the	key-value
entry	of	a	map	item,	any	value	can	be	used	as	the	key,	even	objects.

If	you	try	to	get	a	non-existing	key	using	 	get()		out	of	a	map,	it	will	return	 	undefined	.

Map

48

Weird	situations	you'll	almost	never	find	in	real
life

const	m	=	new	Map()

m.set(NaN,	'test')

m.get(NaN)	//test

const	m	=	new	Map()

m.set(+0,	'test')

m.get(-0)	//test

Iterating	over	a	map

Iterate	over	map	keys

Map	offers	the	 	keys()		method	we	can	use	to	iterate	on	all	the	keys:

for	(const	k	of	m.keys())	{

		console.log(k)

}

Iterate	over	map	values

The	Map	object	offers	the	 	values()		method	we	can	use	to	iterate	on	all	the	values:

for	(const	v	of	m.values())	{

		console.log(v)

}

Iterate	over	map	key,	value	pairs

The	Map	object	offers	the	 	entries()		method	we	can	use	to	iterate	on	all	the	values:

for	(const	[k,	v]	of	m.entries())	{

		console.log(k,	v)

}

which	can	be	simplified	to

for	(const	[k,	v]	of	m)	{

		console.log(k,	v)

Map

49

}

Convert	to	array

Convert	the	map	keys	into	an	array

const	a	=	[...m.keys()]

Convert	the	map	values	into	an	array

const	a	=	[...m.values()]

WeakMap
A	WeakMap	is	a	special	kind	of	map.

In	a	map	object,	items	are	never	garbage	collected.	A	WeakMap	instead	lets	all	its	items	be
freely	garbage	collected.	Every	key	of	a	WeakMap	is	an	object.	When	the	reference	to	this
object	is	lost,	the	value	can	be	garbage	collected.

Here	are	the	main	differences:

1.	 you	cannot	iterate	over	the	keys	or	values	(or	key-values)	of	a	WeakMap
2.	 you	cannot	clear	all	items	from	a	WeakMap
3.	 you	cannot	check	its	size

A	WeakMap	exposes	those	methods,	which	are	equivalent	to	the	Map	ones:

	get(k)	

	set(k,	v)	

	has(k)	

	delete(k)	

The	use	cases	of	a	WeakMap	are	less	evident	than	the	ones	of	a	Map,	and	you	might	never
find	the	need	for	them,	but	essentially	it	can	be	used	to	build	a	memory-sensitive	cache	that	is
not	going	to	interfere	with	garbage	collection,	or	for	careful	encapsualtion	and	information
hiding.

Map

50

Map

51

Generators
Generators	are	a	special	kind	of	function	with	the	ability	to	pause	itself,	and	resume	later,
allowing	other	code	to	run	in	the	meantime.

See	the	full	JavaScript	Generators	Guide	for	a	detailed	explanation	of	the	topic.

The	code	decides	that	it	has	to	wait,	so	it	lets	other	code	"in	the	queue"	to	run,	and	keeps	the
right	to	resume	its	operations	"when	the	thing	it's	waiting	for"	is	done.

All	this	is	done	with	a	single,	simple	keyword:	 	yield	.	When	a	generator	contains	that
keyword,	the	execution	is	halted.

A	generator	can	contain	many	 	yield		keywords,	thus	halting	itself	multiple	times,	and	it's
identified	by	the	 	*function		keyword,	which	is	not	to	be	confused	with	the	pointer	dereference
operator	used	in	lower	level	programming	languages	such	as	C,	C++	or	Go.

Generators	enable	whole	new	paradigms	of	programming	in	JavaScript,	allowing:

2-way	communication	while	a	generator	is	running
long-lived	while	loops	which	do	not	freeze	your	program

Here	is	an	example	of	a	generator	which	explains	how	it	all	works.

function	*calculator(input)	{

				var	doubleThat	=	2	*	(yield	(input	/	2))

				var	another	=	yield	(doubleThat)

				return	(input	*	doubleThat	*	another)

}

We	initialize	it	with

const	calc	=	calculator(10)

Then	we	start	the	iterator	on	our	generator:

calc.next()

This	first	iteration	starts	the	iterator.	The	code	returns	this	object:

{

		done:	false

		value:	5

}

Generators

52

What	happens	is:	the	code	runs	the	function,	with	 	input	=	10		as	it	was	passed	in	the
generator	constructor.	It	runs	until	it	reaches	the	 	yield	,	and	returns	the	content	of	 	yield	:
	input	/	2	=	5	.	So	we	got	a	value	of	5,	and	the	indication	that	the	iteration	is	not	done	(the
function	is	just	paused).

In	the	second	iteration	we	pass	the	value	 	7	:

calc.next(7)

and	what	we	got	back	is:

{

		done:	false

		value:	14

}

	7		was	placed	as	the	value	of	 	doubleThat	.	Important:	you	might	read	like	 	input	/	2		was	the
argument,	but	that's	just	the	return	value	of	the	first	iteration.	We	now	skip	that,	and	use	the
new	input	value,	 	7	,	and	multiply	it	by	2.

We	then	reach	the	second	yield,	and	that	returns	 	doubleThat	,	so	the	returned	value	is	 	14	.

In	the	next,	and	last,	iteration,	we	pass	in	100

calc.next(100)

and	in	return	we	got

{

		done:	true

		value:	14000

}

As	the	iteration	is	done	(no	more	yield	keywords	found)	and	we	just	return	 	(input	*	doubleThat
*	another)		which	amounts	to	 	10	*	14	*	100	.

Generators

53

ES2016

ES2016

54

Array.prototype.includes()
This	feature	introduces	a	more	readable	syntax	for	checking	if	an	array	contains	an	element.

With	ES6	and	lower,	to	check	if	an	array	contained	an	element	you	had	to	use	 	indexOf	,	which
checks	the	index	in	the	array,	and	returns	 	-1		if	the	element	is	not	there.

Since	 	-1		is	evaluated	as	a	true	value,	you	could	not	do	for	example

if	(![1,2].indexOf(3))	{

		console.log('Not	found')

}

With	this	feature	introduced	in	ES7	we	can	do

if	(![1,2].includes(3))	{

		console.log('Not	found')

}

Array.prototype.includes()

55

Exponentiation	Operator
The	exponentiation	operator	 	**		is	the	equivalent	of	 	Math.pow()	,	but	brought	into	the
language	instead	of	being	a	library	function.

Math.pow(4,	2)	==	4	**	2

This	feature	is	a	nice	addition	for	math	intensive	JS	applications.

The	 	**		operator	is	standardized	across	many	languages	including	Python,	Ruby,	MATLAB,
Lua,	Perl	and	many	others.

Exponentiation	Operator

56

ES2017

ES2017

57

String	padding
The	purpose	of	string	padding	is	to	add	characters	to	a	string,	so	it	reaches	a	specific
length.

ES2017	introduces	two	 	String		methods:	 	padStart()		and	 	padEnd()	.

padStart(targetLength	[,	padString])

padEnd(targetLength	[,	padString])

Sample	usage:

padStart()

'test'.padStart(4) 	'test'	

'test'.padStart(5) 	'	test'	

'test'.padStart(8) 	'	test'	

'test'.padStart(8,	'abcd') 	'abcdtest'	

padEnd()

'test'.padEnd(4) 	'test'	

'test'.padEnd(5) 	'test	'	

'test'.padEnd(8) 	'test	'	

'test'.padEnd(8,	'abcd') 	'testabcd'	

String	padding

58

Object.values()
This	method	returns	an	array	containing	all	the	object	own	property	values.

Usage:

const	person	=	{	name:	'Fred',	age:	87	}

Object.values(person)	//	['Fred',	87]

	Object.values()		also	works	with	arrays:

const	people	=	['Fred',	'Tony']

Object.values(people)	//	['Fred',	'Tony']

Object.values()

59

Object.entries()
This	method	returns	an	array	containing	all	the	object	own	properties,	as	an	array	of	 	[key,
value]		pairs.

Usage:

const	person	=	{	name:	'Fred',	age:	87	}

Object.entries(person)	//	[['name',	'Fred'],	['age',	87]]

	Object.entries()		also	works	with	arrays:

const	people	=	['Fred',	'Tony']

Object.entries(people)	//	[['0',	'Fred'],	['1',	'Tony']]

Object.entries()

60

Object.getOwnPropertyDescriptors()
This	method	returns	all	own	(non-inherited)	properties	descriptors	of	an	object.

Any	object	in	JavaScript	has	a	set	of	properties,	and	each	of	these	properties	has	a	descriptor.

A	descriptor	is	a	set	of	attributes	of	a	property,	and	it's	composed	by	a	subset	of	the	following:

value:	the	value	of	the	property
writable:	true	the	property	can	be	changed
get:	a	getter	function	for	the	property,	called	when	the	property	is	read
set:	a	setter	function	for	the	property,	called	when	the	property	is	set	to	a	value
configurable:	if	false,	the	property	cannot	be	removed	nor	any	attribute	can	be	changed,
except	its	value
enumerable:	true	if	the	property	is	enumerable

	Object.getOwnPropertyDescriptors(obj)		accepts	an	object,	and	returns	an	object	with	the	set	of
descriptors.

In	what	way	is	this	useful?

ES6	gave	us	 	Object.assign()	,	which	copies	all	enumerable	own	properties	from	one	or	more
objects,	and	return	a	new	object.

However	there	is	a	problem	with	that,	because	it	does	not	correctly	copies	properties	with	non-
default	attributes.

If	an	object	for	example	has	just	a	setter,	it's	not	correctly	copied	to	a	new	object,	using
	Object.assign()	.

For	example	with

const	person1	=	{

				set	name(newName)	{

								console.log(newName)

				}

}

This	won't	work:

const	person2	=	{}

Object.assign(person2,	person1)

But	this	will	work:

Object.getOwnPropertyDescriptors()

61

const	person3	=	{}

Object.defineProperties(person3,

		Object.getOwnPropertyDescriptors(person1))

As	you	can	see	with	a	simple	console	test:

person1.name	=	'x'

"x"

person2.name	=	'x'

person3.name	=	'x'

"x"

	person2		misses	the	setter,	it	was	not	copied	over.

The	same	limitation	goes	for	shallow	cloning	objects	with	Object.create().

Object.getOwnPropertyDescriptors()

62

Trailing	commas
This	feature	allows	to	have	trailing	commas	in	function	declarations,	and	in	functions	calls:

const	doSomething	=	(var1,	var2,)	=>	{

		//...

}

doSomething('test2',	'test2',)

This	change	will	encourage	developers	to	stop	the	ugly	"comma	at	the	start	of	the	line"	habit.

Trailing	commas

63

Async	functions
JavaScript	evolved	in	a	very	short	time	from	callbacks	to	promises	(ES2015),	and	since
ES2017	asynchronous	JavaScript	is	even	simpler	with	the	async/await	syntax.

Async	functions	are	a	combination	of	promises	and	generators,	and	basically,	they	are	a
higher	level	abstraction	over	promises.	Let	me	repeat:	async/await	is	built	on	promises.

Why	were	async/await	introduced?
They	reduce	the	boilerplate	around	promises,	and	the	"don't	break	the	chain"	limitation	of
chaining	promises.

When	Promises	were	introduced	in	ES2015,	they	were	meant	to	solve	a	problem	with
asynchronous	code,	and	they	did,	but	over	the	2	years	that	separated	ES2015	and	ES2017,	it
was	clear	that	promises	could	not	be	the	final	solution.

Promises	were	introduced	to	solve	the	famous	callback	hell	problem,	but	they	introduced
complexity	on	their	own,	and	syntax	complexity.

They	were	good	primitives	around	which	a	better	syntax	could	be	exposed	to	developers,	so
when	the	time	was	right	we	got	async	functions.

They	make	the	code	look	like	it's	synchronous,	but	it's	asynchronous	and	non-blocking	behind
the	scenes.

How	it	works
An	async	function	returns	a	promise,	like	in	this	example:

const	doSomethingAsync	=	()	=>	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	3000)

		})

}

When	you	want	to	call	this	function	you	prepend	 	await	,	and	the	calling	code	will	stop	until
the	promise	is	resolved	or	rejected.	One	caveat:	the	client	function	must	be	defined	as
	async	.	Here's	an	example:

const	doSomething	=	async	()	=>	{

		console.log(await	doSomethingAsync())

Async	functions

64

}

A	quick	example
This	is	a	simple	example	of	async/await	used	to	run	a	function	asynchronously:

const	doSomethingAsync	=	()	=>	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	3000)

		})

}

const	doSomething	=	async	()	=>	{

		console.log(await	doSomethingAsync())

}

console.log('Before')

doSomething()

console.log('After')

The	above	code	will	print	the	following	to	the	browser	console:

Before

After

I	did	something	//after	3s

Promise	all	the	things
Prepending	the	 	async		keyword	to	any	function	means	that	the	function	will	return	a	promise.

Even	if	it's	not	doing	so	explicitly,	it	will	internally	make	it	return	a	promise.

This	is	why	this	code	is	valid:

const	aFunction	=	async	()	=>	{

		return	'test'

}

aFunction().then(alert)	//	This	will	alert	'test'

and	it's	the	same	as:

const	aFunction	=	async	()	=>	{

		return	Promise.resolve('test')

}

Async	functions

65

aFunction().then(alert)	//	This	will	alert	'test'

The	code	is	much	simpler	to	read
As	you	can	see	in	the	example	above,	our	code	looks	very	simple.	Compare	it	to	code	using
plain	promises,	with	chaining	and	callback	functions.

And	this	is	a	very	simple	example,	the	major	benefits	will	arise	when	the	code	is	much	more
complex.

For	example	here's	how	you	would	get	a	JSON	resource,	and	parse	it,	using	promises:

const	getFirstUserData	=	()	=>	{

		return	fetch('/users.json')	//	get	users	list

				.then(response	=>	response.json())	//	parse	JSON

				.then(users	=>	users[0])	//	pick	first	user

				.then(user	=>	fetch(`/users/${user.name}`))	//	get	user	data

				.then(userResponse	=>	response.json())	//	parse	JSON

}

getFirstUserData()

And	here	is	the	same	functionality	provided	using	await/async:

const	getFirstUserData	=	async	()	=>	{

		const	response	=	await	fetch('/users.json')	//	get	users	list

		const	users	=	await	response.json()	//	parse	JSON

		const	user	=	users[0]	//	pick	first	user

		const	userResponse	=	await	fetch(`/users/${user.name}`)	//	get	user	data

		const	userData	=	await	user.json()	//	parse	JSON

		return	userData

}

getFirstUserData()

Multiple	async	functions	in	series
Async	functions	can	be	chained	very	easily,	and	the	syntax	is	much	more	readable	than	with
plain	promises:

const	promiseToDoSomething	=	()	=>	{

		return	new	Promise(resolve	=>	{

				setTimeout(()	=>	resolve('I	did	something'),	10000)

		})

}

Async	functions

66

const	watchOverSomeoneDoingSomething	=	async	()	=>	{

		const	something	=	await	promiseToDoSomething()

		return	something	+	'	and	I	watched'

}

const	watchOverSomeoneWatchingSomeoneDoingSomething	=	async	()	=>	{

		const	something	=	await	watchOverSomeoneDoingSomething()

		return	something	+	'	and	I	watched	as	well'

}

watchOverSomeoneWatchingSomeoneDoingSomething().then(res	=>	{

		console.log(res)

})

Will	print:

I	did	something	and	I	watched	and	I	watched	as	well

Easier	debugging
Debugging	promises	is	hard	because	the	debugger	will	not	step	over	asynchronous	code.

Async/await	makes	this	very	easy	because	to	the	compiler	it's	just	like	synchronous	code.

Async	functions

67

Shared	Memory	and	Atomics
WebWorkers	are	used	to	create	multithreaded	programs	in	the	browser.

They	offer	a	messaging	protocol	via	events.	Since	ES2017,	you	can	create	a	shared	memory
array	between	web	workers	and	their	creator,	using	a	 	SharedArrayBuffer	.

Since	it's	unknown	how	much	time	writing	to	a	shared	memory	portion	takes	to	propagate,
Atomics	are	a	way	to	enforce	that	when	reading	a	value,	any	kind	of	writing	operation	is
completed.

Any	more	detail	on	this	can	be	found	in	the	spec	proposal,	which	has	since	been	implemented.

Shared	Memory	and	Atomics

68

https://github.com/tc39/ecmascript_sharedmem/blob/master/TUTORIAL.md

ES2018

ES2018

69

Rest/Spread	Properties
ES2015	introduced	the	concept	of	a	rest	element	when	working	with	array	destructuring:

const	numbers	=	[1,	2,	3,	4,	5]

[first,	second,	...others]	=	numbers

and	spread	elements:

const	numbers	=	[1,	2,	3,	4,	5]

const	sum	=	(a,	b,	c,	d,	e)	=>	a	+	b	+	c	+	d	+	e

const	sum	=	sum(...numbers)

ES2018	introduces	the	same	but	for	objects.

Rest	properties:

const	{	first,	second,	...others	}	=	{	first:	1,	second:	2,	third:	3,	fourth:	4,	fifth:	5	

}

first	//	1

second	//	2

others	//	{	third:	3,	fourth:	4,	fifth:	5	}

Spread	properties	allow	to	create	a	new	object	by	combining	the	properties	of	the	object
passed	after	the	spread	operator:

const	items	=	{	first,	second,	...others	}

items	//{	first:	1,	second:	2,	third:	3,	fourth:	4,	fifth:	5	}

Rest/Spread	Properties

70

Asynchronous	iteration
The	new	construct	 	for-await-of		allows	you	to	use	an	async	iterable	object	as	the	loop
iteration:

for	await	(const	line	of	readLines(filePath))	{

		console.log(line)

}

Since	this	uses	 	await	,	you	can	use	it	only	inside	 	async		functions,	like	a	normal	 	await	.

Asynchronous	iteration

71

Promise.prototype.finally()
When	a	promise	is	fulfilled,	successfully	it	calls	the	 	then()		methods,	one	after	another.

If	something	fails	during	this,	the	 	then()		methods	are	jumped	and	the	 	catch()		method	is
executed.

	finally()		allow	you	to	run	some	code	regardless	of	the	successful	or	not	successful
execution	of	the	promise:

fetch('file.json')

		.then(data	=>	data.json())

		.catch(error	=>	console.error(error))

		.finally(()	=>	console.log('finished'))

Promise.prototype.finally()

72

Regular	Expression	improvements
ES2018	introduced	a	number	of	improvements	regarding	Regular	Expressions.	I	recommend
my	tutorial	on	them,	available	at	https://flaviocopes.com/javascript-regular-expressions/.

Here	are	the	ES2018	specific	additions.

RegExp	lookbehind	assertions:	match	a	string	depending	on
what	precedes	it

This	is	a	lookahead:	you	use	 	?=		to	match	a	string	that's	followed	by	a	specific	substring:

/Roger(?=Waters)/

/Roger(?=	Waters)/.test('Roger	is	my	dog')	//false

/Roger(?=	Waters)/.test('Roger	is	my	dog	and	Roger	Waters	is	a	famous	musician')	//true

	?!		performs	the	inverse	operation,	matching	if	a	string	is	not	followed	by	a	specific	substring:

/Roger(?!Waters)/

/Roger(?!	Waters)/.test('Roger	is	my	dog')	//true

/Roger(?!	Waters)/.test('Roger	Waters	is	a	famous	musician')	//false

Lookaheads	use	the	 	?=		symbol.	They	were	already	available.

Lookbehinds,	a	new	feature,	uses	 	?<=	.

/(?<=Roger)	Waters/

/(?<=Roger)	Waters/.test('Pink	Waters	is	my	dog')	//false

/(?<=Roger)	Waters/.test('Roger	is	my	dog	and	Roger	Waters	is	a	famous	musician')	//true

A	lookbehind	is	negated	using	 	?<!	:

/(?<!Roger)	Waters/

/(?<!Roger)	Waters/.test('Pink	Waters	is	my	dog')	//true

/(?<!Roger)	Waters/.test('Roger	is	my	dog	and	Roger	Waters	is	a	famous	musician')	//false

Unicode	property	escapes	 	\p{…}		and	 	\P{…}	

Regular	Expression	improvements

73

https://flaviocopes.com/javascript-regular-expressions/

In	a	regular	expression	pattern	you	can	use	 	\d		to	match	any	digit,	 	\s		to	match	any
character	that's	not	a	white	space,	 	\w		to	match	any	alphanumeric	character,	and	so	on.

This	new	feature	extends	this	concept	to	all	Unicode	characters	introducing	 	\p{}		and	is
negation	 	\P{}	.

Any	unicode	character	has	a	set	of	properties.	For	example	 	Script		determines	the	language
family,	 	ASCII		is	a	boolean	that's	true	for	ASCII	characters,	and	so	on.	You	can	put	this
property	in	the	graph	parentheses,	and	the	regex	will	check	for	that	to	be	true:

/^\p{ASCII}+$/u.test('abc')			//✅

/^\p{ASCII}+$/u.test('ABC@')		//✅

/^\p{ASCII}+$/u.test('ABCݑ ')	//❌

	ASCII_Hex_Digit		is	another	boolean	property,	that	checks	if	the	string	only	contains	valid
hexadecimal	digits:

/^\p{ASCII_Hex_Digit}+$/u.test('0123456789ABCDEF')	//✅

/^\p{ASCII_Hex_Digit}+$/u.test('h')																//❌

There	are	many	other	boolean	properties,	which	you	just	check	by	adding	their	name	in	the
graph	parentheses,	including	 	Uppercase	,	 	Lowercase	,	 	White_Space	,	 	Alphabetic	,	 	Emoji		and
more:

/^\p{Lowercase}$/u.test('h')	//✅

/^\p{Uppercase}$/u.test('H')	//✅

/^\p{Emoji}+$/u.test('H')			//❌

/^\p{Emoji}+$/u.test('ݑ ݑ ')	//✅

In	addition	to	those	binary	properties,	you	can	check	any	of	the	unicode	character	properties	to
match	a	specific	value.	In	this	example,	I	check	if	the	string	is	written	in	the	greek	or	latin
alphabet:

/^\p{Script=Greek}+$/u.test('ελληνικά')	//✅

/^\p{Script=Latin}+$/u.test('hey')	//✅

Read	more	about	all	the	properties	you	can	use	directly	on	the	proposal.

Named	capturing	groups

In	ES2018	a	capturing	group	can	be	assigned	to	a	name,	rather	than	just	being	assigned	a
slot	in	the	result	array:

Regular	Expression	improvements

74

https://github.com/tc39/proposal-regexp-unicode-property-escapes

const	re	=	/(?<year>\d{4})-(?<month>\d{2})-(?<day>\d{2})/

const	result	=	re.exec('2015-01-02')

//	result.groups.year	===	'2015';

//	result.groups.month	===	'01';

//	result.groups.day	===	'02';

The	 	s		flag	for	regular	expressions

The	 	s		flag,	short	for	single	line,	causes	the	 	.		to	match	new	line	characters	as	well.	Without
it,	the	dot	matches	regular	characters	but	not	the	new	line:

/hi.welcome/.test('hi\nwelcome')	//	false

/hi.welcome/s.test('hi\nwelcome')	//	true

Regular	Expression	improvements

75

ESNext
What's	next?	ESNext.

ESNext	is	a	name	that	always	indicates	the	next	version	of	JavaScript.

The	current	ECMAScript	version	is	ES2018.	It	was	released	in	June	2018.

Historically	JavaScript	editions	have	been	standardized	during	the	summer,	so	we	can	expect
ECMAScript	2019	to	be	released	in	summer	2019.

So	at	the	time	of	writing,	ES2018	has	been	released,	and	ESNext	is	ES2019

Proposals	to	the	ECMAScript	standard	are	organized	in	stages.	Stages	1-3	are	an	incubator	of
new	features,	and	features	reaching	Stage	4	are	finalized	as	part	of	the	new	standard.

At	the	time	of	writing	we	have	a	number	of	features	at	Stage	4.	I	will	introduce	them	in	this
section.	The	latest	versions	of	the	major	browsers	should	already	implement	most	of	those.

Some	of	those	changes	are	mostly	for	internal	use,	but	it's	also	good	to	know	what	is	going	on.

There	are	other	features	at	Stage	3,	which	might	be	promoted	to	Stage	4	in	the	next	few
months,	and	you	can	check	them	out	on	this	GitHub	repository:
https://github.com/tc39/proposals.

ESNext

76

https://github.com/tc39/proposals

Array.prototype.{flat,flatMap}
	flat()		is	a	new	array	instance	method	that	can	create	a	one-dimensional	array	from	a
multidimensional	array.

Example:

['Dog',	['Sheep',	'Wolf']].flat()

//['Dog',	'Sheep',	'Wolf']

By	default	it	only	"flats"	up	to	one	level,	but	you	can	add	a	parameter	to	set	the	number	of
levels	you	want	to	flat	the	array	to.	Set	it	to	 	Infinity		to	have	unlimited	levels:

['Dog',	['Sheep',	['Wolf']]].flat()

//['Dog',	'Sheep',	['Wolf']]

['Dog',	['Sheep',	['Wolf']]].flat(2)

//['Dog',	'Sheep',	'Wolf']

['Dog',	['Sheep',	['Wolf']]].flat(Infinity)

//['Dog',	'Sheep',	'Wolf']

If	you	are	familiar	with	the	JavaScript	 	map()		method	of	an	array,	you	know	that	using	it	you
can	execute	a	function	on	every	element	of	an	array.

	flatMap()		is	a	new	Array	instance	method	that	combines	 	flat()		with	 	map()	.	It's	useful
when	calling	a	function	that	returns	an	array	in	the	map()	callback,	but	you	want	your	resulted
array	to	be	flat:

['My	dog',	'is	awesome'].map(words	=>	words.split('	'))

//[['My',	'dog'],	['is',	'awesome']]

['My	dog',	'is	awesome'].flatMap(words	=>	words.split('	'))

//['My',	'dog',	'is',	'awesome']

Array.prototype.{flat,flatMap}

77

Optional	catch	binding
Sometimes	we	dont	need	to	have	a	parameter	binded	to	the	catch	block	of	a	try/catch.

We	previously	had	to	do:

try	{

		//...

}	catch	(e)	{

		//handle	error

}

Even	if	we	never	had	to	use	 	e		to	analyze	the	error.	We	can	now	simply	omit	it:

try	{

		//...

}	catch	{

		//handle	error

}

Optional	catch	binding

78

Object.fromEntries()
Objects	have	an	 	entries()		method,	since	ES2017.

It	returns	an	array	containing	all	the	object	own	properties,	as	an	array	of	 	[key,	value]		pairs:

const	person	=	{	name:	'Fred',	age:	87	}

Object.entries(person)	//	[['name',	'Fred'],	['age',	87]]

ES2019	introduces	a	new	 	Object.fromEntries()		method,	which	can	create	a	new	object	from
such	array	of	properties:

const	person	=	{	name:	'Fred',	age:	87	}

const	entries	=	Object.entries(person)

const	newPerson	=	Object.fromEntries(entries)

person	!==	newPerson	//true

Object.fromEntries()

79

String.prototype.{trimStart,trimEnd}
This	feature	has	been	part	of	v8/Chrome	for	almost	a	year	now,	and	it's	going	to	be
standardized	in	ES2019.

	trimStart()	

Return	a	new	string	with	removed	white	space	from	the	start	of	the	original	string

'Testing'.trimStart()	//'Testing'

'	Testing'.trimStart()	//'Testing'

'	Testing	'.trimStart()	//'Testing	'

'Testing'.trimStart()	//'Testing'

	trimEnd()	

Return	a	new	string	with	removed	white	space	from	the	end	of	the	original	string

'Testing'.trimEnd()	//'Testing'

'	Testing'.trimEnd()	//'	Testing'

'	Testing	'.trimEnd()	//'	Testing'

'Testing	'.trimEnd()	//'Testing'

String.prototype.{trimStart,trimEnd}

80

Symbol.prototype.description
You	can	now	retrieve	the	description	of	a	symbol	by	accessing	its	 	description		property
instead	of	having	to	use	the	 	toString()		method:

const	testSymbol	=	Symbol('Test')

testSymbol.description	//	'Test'

Symbol.prototype.description

81

JSON	improvements
Before	this	change,	the	line	separator	(\u2028)	and	paragraph	separator	(\u2029)	symbols
were	not	allowed	in	strings	parsed	as	JSON.

Using	JSON.parse(),	those	characters	resulted	in	a	 	SyntaxError		but	now	they	parse	correctly,
as	defined	by	the	JSON	standard.

JSON	improvements

82

Well-formed	JSON.stringify()
Fixes	the	 	JSON.stringify()		output	when	it	processes	surrogate	UTF-8	code	points	(U+D800
to	U+DFFF).

Before	this	change	calling	 	JSON.stringify()		would	return	a	malformed	Unicode	character	(a
"�").

Now	those	surrogate	code	points	can	be	safely	represented	as	strings	using
	JSON.stringify()	,	and	transformed	back	into	their	original	representation	using	 	JSON.parse()	.

Well-formed	JSON.stringify()

83

Function.prototype.toString()
Functions	have	always	had	an	instance	method	called	 	toString()		which	return	a	string
containing	the	function	code.

ES2019	introduced	a	change	to	the	return	value	to	avoid	stripping	comments	and	other
characters	like	whitespace,	exactly	representing	the	function	as	it	was	defined.

If	previously	we	had

function	/*	this	is	bar	*/	bar	()	{}

The	behavior	was	this:

bar.toString()	//'function	bar()	{}

now	the	new	behavior	is:

bar.toString();	//	'function	/*	this	is	bar	*/	bar	()	{}'

Function.prototype.toString()

84

	Preface
	ES2015
	let and const
	Arrow Functions
	Classes
	Default parameters
	Template Literals
	Destructuring assignments
	Enhanced Object Literals
	For-of loop
	Promises
	Modules
	New String methods
	New Object methods
	The spread operator
	Set
	Map
	Generators

	ES2016
	Array.prototype.includes()
	Exponentiation Operator

	ES2017
	String padding
	Object.values()
	Object.entries()
	Object.getOwnPropertyDescriptors()
	Trailing commas
	Async functions
	Shared Memory and Atomics

	ES2018
	Rest/Spread Properties
	Asynchronous iteration
	Promise.prototype.finally()
	Regular Expression improvements

	ESNext
	Array.prototype.{flat,flatMap}
	Optional catch binding
	Object.fromEntries()
	String.prototype.{trimStart,trimEnd}
	Symbol.prototype.description
	JSON improvements
	Well-formed JSON.stringify()
	Function.prototype.toString()

